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Abstract The oxygen diffusion problem is usually formulated in two stages: first, the steady
state and second, the moving boundary stage. In this paper, we will consider the solution of the
second stage in which a new semi-analytical method for solving such a problem was developed.
The present method starts by assuming a polynomial representing the profile of oxygen
concentration, and then by some mathematical manipulation a system of linear equations is
obtained. Numerical solution for the system with a simple scheme relating the moving boundary
and its velocity leads to the unknown functions in the assumed polynomial.

Introduction
Under certain conditions, the phenomenon of oxygen diffusion from blood into
oxygen-consuming tissue gives rise to a moving boundary. A typical example
arises when studying tumour tissue-oxygen interaction. Generally, in moving
boundary problems, the velocity of the moving boundary is determined by the
physical requirement that the latent heat required for the change of phase must
be supplied or removed by conductions.

In the oxygen diffusion problem, a moving boundary is an essential feature
of the problem, but conditions that determine its movement are different. Not
only is the concentration of oxygen alyways zero at the moving boundary, but
also no oxygen diffuses across it at any time.

Crank and Gupta (1972a), who studied the moving boundary problem
arising from the diffusion of oxygen into absorbing tissue, first reported the
problem of oxygen diffusion. First the oxygen is allowed to diffuse into a
medium, some of the oxygen is absorbed by the medium, thereby being
removed from the diffusion process, and the concentration of oxygen at the
surface of the medium is maintained constant.

This phase of the problem continues until a steady state is reached in which
the oxygen does not penetrate any further into the medium. The supply of
oxygen is then cut off and the surface is sealed so that no oxygen passes in or
out, the medium continues to absorb the available oxygen already in it and, as a
consequence, the boundary marking the furthest depth of penetration in the
steady state starts to recede towards the sealed surface.

The major problem is that of tracking the movement of the moving
boundary during this stage of the process as well as determining the
distribution of oxygen throughout the medium at any instant in time. This type
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of problem, also known as an implicit moving boundary problem, has been
addressed by Crank and Gupta (1972a); initially when the moving boundary is
moving slowly they used an approximate analytical solution and a numerical
scheme once the velocity of the moving boundary has increased.

Their numerical scheme consists of using a fixed grid network and
calculating the concentration at each node using Euler equation. For the grid
near the moving boundary, a Langrange type formula is used and the location
of the moving boundary is determined using a Taylor series expansion.

In another paper (Crank and Gupta, 1972b) the same authors used a uniform
grid system which moves with the velocity of the moving boundary; this has
the effect of transferring the unequal interval from the neighborhood of the
moving boundary to the surface of the medium and therefore gives an
improvement in the smoothness of the calculated motion of the moving
boundary. They evaluated the concentration distribution at the new grid points
by interpolation using either cubic splines or ordinary polynomials.

Hansen and Hougaard (1974) used an integral equation for the function
defining the position of the moving boundary and an integral formula for the
concentration distribution. The integral equation is solved asymptotically
during the entire motion of the moving boundary whereas the concentration
integral is solved asymptotically for small times, and computed by numerical
quadrature at later times.

Many other authors have dealt with the problem by various methods; for
instance, Berger et al. (1975) used a truncation method, whilst Miller et al. (1978)
used finite elements. More references relating to the oxygen diffusion problem
involving a moving boundary can be found in Furzeland (1980) and Crank
(1984).

The common feature of the numerical methods (Crank and Gupta, 1972a;
1972b; Hansen and Hougaard, 1974; Berger et al., 1975; Miller et al., 1978;
Furzeland, 1980; Crank, 1984) is that they adopt a fixed space-time grid
network, and utilize both numerical computation and analytical
approximation. In order to prevent the oxygen concentration from taking
negative values, which causes instability, these methods often resort to small
time steps. This not only increases the CPU-time, but also the array size.

Furthermore, the numerical procedures can not be used up to the end of the
absorption process, due to the lack of necessary mesh points when the moving
boundary is close to the sealed surface. Therefore, in all methods extrapolation
is used to evaluate the time at which the moving boundary reaches the sealed
surface.

Gupta and Kumar (1981), by using a variable time step grid network, avoid
the large number of time steps generally required for the methods in Crank and
Gupta (1972a; 1972b); Hansen and Hougaard (1974), Berger et al. (1975), Miller
et al. (1978), Furzeland (1980) and Crank (1984). Their method computes the
concentration distribution using the Crank-Nicolson implicit finite difference
scheme. Due to the implicit boundary condition, an integral equation is used to
determine the time steps; this gives rise to convergence difficulties because it is
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very sensitive to a change in concentration. Zerroukat and Chatwin (1992)
modified the explicit variable time step method to solve the oxygen diffusion as
an example of implicit moving boundary problems.

One of the most important semi-analytical methods is that proposed first in
1988 by Gupta and Banik (1989) to solve the implicit moving boundary
problems, which is called constrained integral method (CIM). They solved the
diffusion of oxygen in a sphere as an example of implicit moving boundary
problem. In their method they assumed the distribution of the oxygen
concentration as a polynomial of even degree in which four unknown functions
should be determined as a part of the required solution. They expressed these
unknowns in terms of the concentration at the outer surface of the sphere,
which was still unknown and to be determined. Finally, they reduced the
unknowns to two unknowns, the concentration at the outer surface and the
position of the moving boundary.

In the present paper, a major modification is developed to the constrained
integral method, and the present method takes the name of `̀ modified
constrained integral method'' or simply (MCIM). The present method starts by
assuming a polynomial representing the profile of oxygen concentration.
Herein this polynomial is taken as that assumed by Gupta and Banik (1989)
just for the purpose of comparison. Moments are then taken, starting from the
first one to avoid time differentiation for the unknowns in the assumed
polynomial. The number of moments will be equal to the number of unknowns
in the polynomial. After some mathematical manipulation, a system of linear
equations is obtained, their solution leads to the unknowns directly and
subsequently the position of the moving boundary.

Problem description and formulation
Consider a radially symmetric spherical tissue (an absorbing medium in
general) of radius k that consumes oxygen at a constant rate A everywhere.
The sphere, which is assumed to be free of oxygen at time zero, is subjected to
unit concentration at its outer surface r = k, as shown in Figure 1.

As soon as oxygen penetrates the tissue, absorption starts taking place in
the region that has a non-zero concentration. The diffusion process coupled

ro(τ) r = k

Figure 1.
Problem configuration
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with absorption may be defined by Gupta and Baik (1990):

@U

@�
� 1

r2

@

@r

�
Dr2 @U

@rr

�
ÿ A r0 ��� < r < k �1�

Where

r0��� Radius of the spherical boundary at time �

D Constant of diffusion coefficient

A Constant rate of consumption of oxygen

Because there is no flow beyond r0��� into the sphere, we have:

U � @U

@r
r � r0��� �2�

The condition at the surface r = k and the initial condition may be written as:

U�r; �� � 1 r � k; � > 0 �3�
and

U�r; �� � 0 0 � r � k; � � 0 �4�
with

r0�0� � k �5�
Gupta and Banik (1990) introduced the following change of variable:

v � Ur �6ÿa�
to reduce equation (1) to linear space, however, the constant absorption terms in
the sphere must be transformed in the linear space to terms equivalent to the
distance from the origin. Because of that Gupta and Banik (1990) introduced:

x � r=k �6ÿb�

t � D�=k2 �6ÿc�

u � Dv=Ak3 �6ÿd�
Then, the system (1)-(5) becomes:

@u

@t
� @

2u

@x2
ÿ x s�t� � x � 1 �7�

u�x; t� � 0 x � s�t� �8ÿa�
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@u

@x
� 0 x � s �t� �8ÿb�

u�x; t� � constant � uc�say� at x � 1; t > 0 �9�

u�x; t� � 0 0 � x � 1; t � 0 �10�

s�0� � 1 �11�
Where s(t) is the position of the moving boundary in linear space corresponding
to r0�t� in spherical boundary. We first let the system reach steady state and
then seal off the surface x = 1, so that no oxygen can get into the medium or can
come out of it.

However, the process of absorption still continues, and the point of zero
concentration, which was originally at x = 0, starts moving away from it. The
problem is to determine the location of the point of zero concentration, which is
the position of the moving boundary and the concentration in the medium at
different times.

The second stage may be described by the following equations:

@u

@t
� @

2u

@x2
ÿ x s�t� < x < 1 ; t > 0 �12�

u�x; t� � 0 at x � s�t�; t > 0 �13�

@u

@x
�x; t� � 0 at x � s�t�; t > 0 �14�

@u

@x
�x; t� � 0 at x � 1; t > 0 �15�

u�x; t� � x3=6 0 � x � 1; t � 0 �16�

s�0� � 0 �17�
Equation (16) represents the steady state solution. The initial condition (17)
corresponds to the second case in the analysis given by Gupta and Banik
(1990), where uc in equation (9) equals 1/2 which states that the steady-state is
obtained when oxygen just reaches the center of the sphere.

The proposed modified constrained integral method (MCIM)
Since the gradient is zero at the outer surface of sphere, i.e. at x = 1, then
assume a concentration profile in (1 ± x) of the form (Gupta and Banik, 1989):
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u�x; t� �a�t� � b�t� 1ÿ x

1ÿ s�t�
� �2

� c�t� 1ÿ x

1ÿ s�t�
� �4

� d�t� 1ÿ x

1ÿ s�t�
� �6

;

s�t� < x < 1

�18�

where a(t), b(t), c(t), d(t) and s(t) are five unknowns to be determined. The next
step is to take moments as proposed first by Gupta and Banik (1990), but the
treatment in the present method will be different as will be seen next.

The general formula for the moments of order n is:Z1

s�t�

�1ÿ x�n @u

@t
dx �

Z1

s�t�

�1ÿ x�n
�
@2u

@x2
ÿ x

�� �
dx �19�

in which n = 0 corresponding to zero moment, n = 1 corresponds to first
moment, . . . etc. In the present paper we will start with the first moment to
avoid getting the differentiation with respect to time for the unknowns' a(t),
b(t), c(t) and d(t), which is the first major difference between the present method
and the constrained integral method, as follows:Z1

s

�1ÿ x� @u

@t
dx �

Z1

s

�1ÿ x�
�
@2u

@x2
ÿ x

�
dx �20�

Integrating both sides, and applying the Leibniz's rule to the left-hand side,
gives:

d

dt

Z1

s

�1ÿ x� u dx

24 35 ÿ �1ÿ s� u�s; t� ds

dt

� �

� �1ÿ x�
"
@u

@x
ÿ x2

2

#1

s

�
Z1

s

@u

@x
ÿ x2

2

� �
dx

�21�

Substituting in the assumed polynomial for x = s, gives:

u�s; t� � a�t� � b�t� � c�t� � d�t� �22�
Substituting equation (22) into (21), simplifying the integration and then
differentiating leads to:

ÿs� �1ÿ s� a�t� � �1ÿ s� �1ÿ s� � �b � c � d�
� 1

2
s2�1ÿ s� ÿ 1

6
�1ÿ s3�

�23�
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Following the same procedure for the second leads to the following equation:

ÿ s��1ÿ s�2a�t� � b�t� 4

3
�1ÿ s� ÿ s� �1ÿ s�2

� �
� c�t� 8

5
�1ÿ s� ÿ s��1ÿ s�2

� �
� d�t� 12

7
�1ÿ s� ÿ s��1ÿ s�2

� �
� 1

2
s2�1ÿ s�2 � 1

3
s3�1ÿ s� ÿ 1

12
�1ÿ s4�

�24�

For the third moment:

�3ÿ s��1ÿ s���a�t� � b�t� � c�t� � d�t�� � 1

2
s2 �25�

And finally for the fourth moment:

a�t��16�1ÿ s�3 ÿ s��1ÿ s�4� � b�t��8�1ÿ s�3 ÿ s��1ÿ s�4�

� c�t� 32

5
�1ÿ s�3 ÿ s��1ÿ s4�

� �
� d�t� 40

7
�1ÿ s�3 ÿ s��1ÿ s�4

� �
� 1

2
s2�1ÿ s�4 � 2

3
s3�1ÿ s�3 � 1

2
�1ÿ s�2�1ÿ s�4

�26�

Equations (23), (24), (25) and (26) can be written in the following matrix form:

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

2664
3775

a�t�
b�t�
c�t�
d�t�

2664
3775 �

C1

C2

C3

C4

2664
3775 �27�

Where:

A11 � ÿs��1ÿ s� �28�

A12 � A13 � A14 � 1ÿ s��1ÿ s� �29�

A21 � ÿs��1ÿ s�2 �30�

A22 � �4=3��1ÿ s� ÿ s��1ÿ s�2 �31�

A23 � �8=5��1ÿ s� ÿ s��1ÿ s�2 �32�
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A24 � �12=7��1ÿ s� ÿ s��1ÿ s�2 �33�

A31 � A32 � A33 � A34 � 3ÿ s��1ÿ s� �34�

A41 � 16�1ÿ s�3 ÿ s��1ÿ s�4 �35�

A42 � 8�1ÿ s�3 ÿ s��1ÿ s�4 �36�

A43 � 32

5
�1ÿ s�3 ÿ s��1ÿ s�4 �37�

A44 � 40

7
�1ÿ s�3 ÿ s��1ÿ s�4 �38�

C1 � 1

2
s2�1ÿ s� ÿ 1

6
�1ÿ s3� �39�

C2 � 1

2
s2�1ÿ s�2 � 1

3
s3�1ÿ s� ÿ 1

12
�1ÿ s4� �40�

C3 � 1

2
s2 �41�

C4 � 1

2
s2�1ÿ s�4 � 2

3
s3�1ÿ s�3 � 1

2
�1ÿ s�2�1ÿ s�4 �42�

It is clear that all the coefficients in the system (27) are functions of the moving
boundary and its velocity. This system must be solved at each time step
iteratively.

At the beginning an initial guess for the velocity of the moving boundary is
assumed, after that a linear variation between time and the position of the
moving boundary is assumed according to the following relation (Ahmed and
Wrobel, 1995; Ahmed, 1997):

ds�t�
dt

� sj�1�t� ÿ sj�t�
tj�1 ÿ tj

�43�

The flow chart describing the numerical procedure for solving the system
given in equation (27) is shown in Figure 2.

In which

j Time step

i Iteration number.
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Guess an initial velocity and then the
position of the moving boundary

Solve the system (27) to get a, b, c and d at t j

Evaluation u i (s i  , t j)  =  u i
j j

No

No

Yes
Yes

Stop

ev

evu i   –u    ≤bc ε

js i   > 1

j+1s i  
   = s i

j

js i+1=s i +s i .∆tj j

Figure 2.
Flow chart
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uev Concentration evaluated at the moving boundary

ubc Concentration given as a boundary condition

Numerical results and discussions

Various authors, beginning with Murray and Landis (1959), Crank and Gupta

(1972a; 1972b), and Gupta and Banik (1989; 1990) solved the problem under

consideration. The last one developed what is called the constrained integral

method (CIM) on which the comparison will be restricted.

The moving boundary versus time graph in Figure 3 shows that the

boundary moves very slowly in the beginning, while its movement becomes

very fast in the last stages. It is clear the agreement between the present

method MCIM and the constrained integral method CIM in the behaviour of the

movement with slightly small error can be neglected.

The variation of oxygen concentration with depth was made at different

times, t = 0.01, 0.03 and 0.05 as shown in Figure 4. The error in variation

between the two methods is slightly large only at the beginning time step, this

being due to numerical solution of the system of equations obtained.

X
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

0.15

0.13

0.10

0.08

0.05

0.03

0.00

C
on

ce
nt

ra
tio

n

CIM at t = 0.01
CIM at t = 0.03
CIM at t = 0.05
Present at t = 0.01
Present at t = 0.03
Present at t = 0.05

Key

0.90 1.00

Figure 4.
Oxygen concentration
versus depth



An approximate
method for

oxygen diffusion

641

Another comparison between the two methods is made as shown in Figure 5, in
which the variation of oxygen concentration with time is calculated at different
depths and shows a slightly large error occurs only at the beginning time step
and then decreases.

Conclusion
The present method is semi-analytical and can be applied to any moving
boundary problem in which the moving boundary is either implicit or explicit.
It transforms the state equation with the associate boundary and initial
conditions to a system of linear equations.

It can be seen from the results obtained by the present method that the error
is small compared with the constrained integral method (CIM) and can be
neglected. Also, to apply the present method there is no need to solve
inequalities as is done in the constrained integral method (CIM) to avoid
negative values for the velocity of the moving boundary, which is inconsistent
physically.

The error obtained in the present method comes from the numerical solution
of the system of linear equations and from the assumption of linear variation of
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the moving boundary velocity with time. The last one can be reduced by taking
small time steps and by decreasing the prescribed tolerance when solving the
system of the obtained linear equations.
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